Urban Water Security

Robert C. Brears

Challenges in Water Management

WILEY

URBAN WATER SECURITY

Challenges in Water Management Series

Editor:

Justin Taberham Independent Consultant and Environmental Advisor, London, UK

Other titles in the series:

Water Resources: A New Management Architecture Michael Norton, Sandra Ryan and Alexander Lane 2017 ISBN: 978-1-118-79390-9

URBAN WATER SECURITY

ROBERT C. BREARS

WILEY

This edition first published 2017 © 2017 by John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119131724

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover image: © Peter Zelei images/Gettyimages

Set in 10/12pt Melior by SPi Global, Pondicherry, India

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \\$

Contents

Series Ackno	Editor Fo wledgem	preword – Challenges in Water Management nents	xvii xix
Introdu	iction		1
1 Wa	ter 101		5
Inti	oduction	1	5
1.1	What i	s water?	5
1.2	Hydro	logical cycle	6
	1.2.1	Precipitation	7
	1.2.2	Runoff	8
	1.2.3	Evaporation	9
	1.2.4	Groundwater	9
	1.2.5	How old is water?	11
1.3	Natura	l variations to water quantity	11
	1.3.1	Floods	12
	1.3.2	Droughts	12
1.4	Natura	l variations to water quality	14
	1.4.1	Temperature	14
	1.4.2	Dissolved oxygen	14
	1.4.3	pH	14
	1.4.4	Dissolved and suspended solids	15
	1.4.5	Turbidity	15
	1.4.6	Minerals	16
	1.4.7	Salinity	16
	1.4.8	Inorganic and organic chemicals	16
	1.4.9	Nutrients: Nitrogen and phosphorus	16
1.5	Impact	ts of urbanisation on water resources	17
	1.5.1	Point source pollution	17
	1.5.2	Non-point source pollution	18
	1.5.3	Damage to aquatic ecosystems	18
	1.5.4	Impervious surfaces modifying hydrological cycles	19
	1.5.5	Impervious surfaces lowering water quality	19
	1.5.6	Impervious surfaces affecting groundwater recharge	19
1.6	Water	and wastewater treatment processes	20
	1.6.1	Ensuring drinking water safety	21
Not	es		22

vi Contents

2	What is urban water security?				
	Intro	oductic	n	25	
	2.1	Non-o	climatic challenges to achieving urban water security	26	
		2.1.1	Population growth and demographic changes	27	
		2.1.2	Rapid urbanisation	27	
		2.1.3	Rapid economic growth and rising income levels	28	
		2.1.4	Increased demand for energy	29	
		2.1.5	Increased demand for food	29	
	2.2	Clima	tic challenges to achieving urban water security	30	
		2.2.1	Impacts of climate change on water quality and quantity	31	
		2.2.2	Socioeconomic risks of climate change	32	
	2.3	Redu	cing non-climatic and climatic risks to		
		urban	water security	32	
	Note	es		34	
3	Mar	naging v	water sustainably to achieve urban water security	37	
Ū	Intro	oductic	m	37	
	3.1	What	is sustainability?	37	
	0.1	3.1.1	Urban sustainability	38	
		3.1.2	Approaches to sustainability	39	
		3.1.3	Environmental pillar of strong sustainability	40	
		3.1.4	Economic pillar of strong sustainability	40	
		3.1.5	Social pillar of strong sustainability	41	
		3.1.6	Urban resilience and sustainability	42	
	3.2	What	does sustainability mean in urban water		
		mana	gement?	42	
		3.2.1	Environmental pillar in strong sustainable		
			urban water management	43	
		3.2.2	Economic pillar in strong sustainable urban		
			water management	44	
		3.2.3	Social pillar in strong sustainable		
			urban water management	44	
	3.3	Susta	inable water resources management frameworks	45	
		3.3.1	Integrated water resources management	45	
		3.3.2	Origins of IWRM principles	46	
		3.3.3	Benefits of managing water in an integrated manner	46	
		3.3.4	Agenda 21 and IWRM	47	
		3.3.5	The role of efficiency in IWRM	48	
		3.3.6	Concepts of water efficiency	48	
		3.3.7	Management instruments in IWRM	49	
	3.4	Frame	ework for managing urban water sustainably:		
		Integr	ated urban water management	49	
		3.4.1	IUWM maximising pillars of sustainability	50	
		3.4.2	IUWM: Balancing demand for water with supply	51	
		3.4.3	IUWM: Introducing demand management	51	

	3.5	Other	frameworks for managing urban water sustainably	52
		3.5.1	Water sensitive urban design	52
		3.5.2	Low impact development	52
		3.5.3	Low impact urban design and development	52
	Note	es		53
4	Den	nand m	anagement to achieve urban water security	60
	Intro	oductic	n	60
	4.1	Purpo	ose of demand management	60
		4.1.1	Types of demand management	
			strategies and instruments	62
	4.2	Regul	atory and technological demand	
		manag	gement instruments	62
		4.2.1	Pricing of water	62
		4.2.2	What is the right price?	65
		4.2.3	Water meters	66
		4.2.4	Reducing unaccounted-for water	69
		4.2.5	Temporary ordinances and regulations	70
		4.2.6	Permanent ordinances and regulations	71
		4.2.7	Source protection	71
		4.2.8	Developing alternative supplies	72
		4.2.9	Subsidies and rebates	72
		4.2.10) Product labelling and retrofits	73
		4.2.11	Service innovation	74
	4.3	Comn	nunication and information demand	
		manag	gement instruments	75
		4.3.1	Education and public awareness	75
		4.3.2	Competition between water users	77
		4.3.3	Corporate social responsibility	77
	4.4.	Portfo	olio of demand management tools	78
	Note	es		79
5	Trar	sitions	3	86
	Intro	oductic	n	86
	5.1	What	is a transition?	86
		5.1.1	What types of transitions are there?	87
		5.1.2	Transitions occur over multiple dimensions	87
		5.1.3	The transition process	89
		5.1.4	Multilevel drivers of transitions	89
		5.1.5	Forces in transitions	91
	5.2	Opera	ationalisation of transitions	91
		5.2.1	Approaches in decision-making	92
		5.2.2	Diffusion strategies	92
	5.3	Diffus	sion mechanisms	93
		5.3.1	Direct diffusion mechanisms	93
		5.3.2	Indirect diffusion mechanisms	94

		5.3.3	The diffusion process	94
		5.3.4	Lock-in and barriers to diffusion	94
	5.4	Trans	ition management	95
		5.4.1	Transition management levels	95
		5.4.2	Coordination of activities across the levels	96
		5.4.3	Transition management cycle	97
	Note	es		97
6	Trar	sitions	towards managing natural resources and water	105
	Intro	oductic	on	105
	6.1	Trans	itions in natural resource management	106
		6.1.1	Adaptation towards climate change	106
		6.1.2	Types of adaptations: Green and soft	107
		6.1.3	Managing resource scarcity	107
	6.2	What	is a transition in urban water management?	109
		6.2.1	Drivers of transitions in urban water management	109
		0.2.2	ta demand side monogement	110
		<u> </u>	to demand-side management	110
	0.0	0.2.3	types of transitions in third-order scarcity	112
	6.3	Opera	itionalising transitions in third-order scarcity	112
		6.3.1	Setting the macro-level strategic goal	112
		6.3.2	Micro-level demand management tools	113
		6.3.3	Iransition management cycle in third-order scarcity	115
		6.3.4	SWOT analysis	115
	64	Barrie	ore to transitions towards urban water security	115
	0.1	641	External harriers	116
		642	Internal harriers	118
		643	Peychological harriers	110
		644	Social barriers	121
	Note	98 95		121
7	Ams	sterdan	n transitioning towards urban water security	136
	Intro	oductio	n	136
	7.1	Brief	company background	136
	7.2	Water	supply and water consumption	137
	7.3	Strate	gic vision: Amsterdam's Definitely Sustainable 2011–2014	138
	7.4	Drive	rs of water security	138
		7.4.1	Corporate rebranding	138
		7.4.2	Protecting good quality raw water and human health	139
		7.4.3	Political and economic	140
		7.4.4	Carbon neutrality	140
		7.4.5	Population growth	140
		7.4.6	Climate change	140
	7.5	Regul	atory and technological demand management	110
		tools	to achieve urban water security	141
		7.5.1	Drinking water and wastewater tariffs	141
		7.5.2	Metering	141
			5	

		7.5.3	Reducing unaccounted-for water	142
		7.5.4	Protecting the quality of source water	143
		7.5.5	Reducing energy costs in wastewater treatment	143
		7.5.6	Alternative water supplies	144
	7.6	Comn	nunication and information demand management	
		tools	to achieve urban water security	144
		7.6.1	School programmes: Sight visits	
			and education programmes	144
		7.6.2	Public education: Determining the message	145
		7.6.3	Promotion of water-efficient devices	145
		7.6.4	Billing inserts	145
		7.6.5	Promoting water-efficient technologies	145
		7.6.6	Non-domestic water efficiency advice	145
	7.7	Case a	study SWOT analysis	146
		7.7.1	Strengths	146
		7.7.2	Weaknesses	146
		7.7.3	Opportunities	147
		7.7.4	Threats	148
	7.8	Trans	itioning towards urban water security summary	149
	Note	∋s		150
8	Berl	in tran	sitioning towards urban water security	151
	Intro	oductio	n	151
	8.1	Brief	company background	151
	8.2	Water	supply and water consumption	152
	8.3	Strate	egic vision: Using water wisely	153
		8.3.1	Berlin Water Act	153
	8.4	Drive	rs of water security	153
		8.4.1	Protecting water supply from	
			wastewater contamination	154
		8.4.2	Reducing energy costs and carbon emissions	154
		8.4.3	Climate change impacting water availability	154
	8.5	Regul	atory and technological demand management	
		tools	to achieve urban water security	155
		8.5.1	Tariff for drinking water and wastewater	155
		8.5.2	Metering	156
		8.5.3	Reducing unaccounted-for water	156
		8.5.4	Source protection: Reducing treatment costs	157
		8.5.5	Alternative water supplies	158
		8.5.6	Reducing energy costs	158
		8.5.7	Reducing treatment costs: Separate systems	159
	0.0	8.5.8	Water-efficient technologies	159
	8.6	Comn	nunication and information demand management	
		tools	to achieve urban water security	159
		8.6.1	Water awareness in the past	159
		8.6.2	loday: Using water in the right way and reducing	4.0.0
			cardon emissions	160

x Contents

	8.7	Case st	udy SWOT analysis	160		
		8.7.1	Strengths	160		
		8.7.2	Weaknesses	161		
		8.7.3	Opportunities	162		
		8.7.4	Threats	162		
	8.8	Transit	tioning towards urban water security summary	163		
	Notes	5		164		
9	Cope	nhagen t	transitioning towards urban water security	165		
	Intro	duction		165		
	9.1	Brief c	ompany background	165		
	9.2	Water s	supply and water consumption	166		
	9.3	Strateg	ic vision: Water supply plan (2012–2016)	166		
	9.4	Drivers	s of water security	167		
		9.4.1	1980s: Quantity of water	167		
		9.4.2	1990s: Quality of water	168		
		9.4.3	2000s: Political and quality of water	168		
		9.4.4	2010 onwards: Quality and quantity of water	168		
	9.5	Regula	tory and technological demand management			
		tools to	o achieve urban water security	169		
		9.5.1	Pricing of water and wastewater	169		
		9.5.2	Metering	170		
		9.5.3	Reducing unaccounted-for water	170		
		9.5.4	Source protection: New forests and reducing			
			pesticide use	171		
		9.5.5	Developing alternative water supplies	172		
		9.5.6	Reducing energy costs and carbon emissions	173		
		9.5.7	Subsidies for toilets and water meters	173		
		9.5.8	Consultants and water conservation advice	173		
		9.5.9	Water-saving devices	174		
	9.6	Communication and information demand management				
		tools to	o achieve urban water security	174		
		9.6.1	Education and awareness in schools	174		
		9.6.2	Public education	174		
		9.6.3	Challenges of public awareness campaigns	175		
	9.7	Case st	udy SWOT analysis	175		
		9.7.1	Strengths	175		
		9.7.2	Weaknesses	176		
		9.7.3	Opportunities	176		
		9.7.4	Threats	177		
	9.8	Transit	tioning towards urban water security summary	178		
	Notes	5		179		
10	Denv	er transi	itioning towards urban water security	180		
	Intro	luction		180		
	10.1	Brief c	ompany background	180		
	10.2	Water s	supply and water consumption	181		
		10.2.1	Recycled water	182		
		10.2.2	Customer segments	182		

	10.3	Strateg	ic vision: Denver Water's 22 percent water target	183	
		10.3.1	Denver Water environmental stewards	183	
	10.4	Drivers	s of water security	183	
		10.4.1	Climate change	183	
		10.4.2	Economic demand	184	
		10.4.3	Population growth	184	
		10.4.4	Political	184	
	10.5	Regula	tory and technological demand management		
		tools to	o achieve urban water security	185	
		10.5.1	Treated water fixed charges	185	
		10.5.2	Metering	187	
		10.5.3	Reducing unaccounted-for water	187	
		10.5.4	Protecting the quality of source water	187	
		10.5.5	Water restrictions	188	
		10.5.6	Restrictions on alternative water supplies	188	
		10.5.7	Rebates for promoting WaterSense-labelled products	188	
		10.5.8	Water audits	190	
	10.6	Comm	unication and information demand management		
		tools to	o achieve urban water security	191	
		10.6.1	School education	191	
		10.6.2	Denver Metro Water Festival	192	
		10.6.3	Public education and awareness: Use only		
			what you need	192	
		10.6.4	Polling customers on water conservation	192	
		10.6.5	Cultural change: Outdoor water use	193	
		10.6.6	Commercial partnerships to achieve cultural		
			change in water usage	193	
		10.6.7	Targeted messaging	193	
		10.6.8	Billing inserts	193	
		10.6.9	Framing water conservation messages	194	
	10.7	Case st	udy SWOT analysis	194	
		10.7.1	Strengths	194	
		10.7.2	Weaknesses	195	
		10.7.3	Opportunities	195	
		10.7.4	Threats	196	
	10.8	Transit	ioning towards urban water security summary	196	
	Notes			198	
11	Hamb	ourg tran	nsitioning towards urban water security	199	
	Introc	luction		199	
	11.1	Brief c	ompany background	199	
	11.2	2 Water supply and water consumption			
	11.3	Strateg	ic vision: The HAMBURG WATER Cycle	200	
	11.4	Drivers	s of water security	200	
		11.4.1	Reducing the volume of imported water	200	
		11.4.2	Climate change	201	
		11.4.3	Population growth	201	
		11.4.4	Rising energy costs	201	

xii Contents

	11.5	Regula	tory and technological demand management	
		tools to	o achieve urban water security	202
		11.5.1	Pricing of water and sewage	202
		11.5.2	Metering	203
		11.5.3	Reducing unaccounted-for water	203
		11.5.4	Drinking water restrictions for public institutions	203
		11.5.5	Developing alternative systems:	
			HAMBURG WATER Cycle	204
		11.5.6	Source protection and reducing energy costs	204
		11.5.7	Developing water-efficient technologies	205
	11.6	Comm	unication and information demand management	
		tools to	o achieve urban water security	206
		11.6.1	Education and awareness in schools: AQUA AGENTS	206
		11.6.2	Public education	207
	11.7	Case st	udy SWOT analysis	207
		11.7.1	Strengths	207
		11.7.2	Weaknesses	208
		11.7.3	Opportunities	208
		11.7.4	Threats	210
	11.8	Transit	ioning towards urban water security summary	210
	Note			210
12	Lond	on trans	itioning towards urban water security	211
	Intro	luction		211
	12.1	Brief c	ompany background	211
	12.2	Water s	supply and water consumption	212
	12.3	Strateg	ic vision: Reducing consumption	212
	12.4	Drivers	s of water security	212
		12.4.1	Demand outstripping supply	212
		12.4.2	Population growth	213
		12.4.3	Climate change	213
		12.4.4	Rising energy prices	213
		12.4.5	Reducing carbon emissions	213
	12.5	Regula	tory and technological demand management	
		tools to	o achieve urban water security	213
		12.5.1	Pricing of water and wastewater	213
		12.5.2	Metering	214
		12.5.3	Reducing unaccounted-for water	215
		12.5.4	Reducing energy costs in wastewater treatment	215
		12.5.5	Partnerships to install water-saving devices	215
	12.6	Comm	unication and information demand management	
		tools to	o achieve urban water security	216
		12.6.1	Promoting water-saving devices	216
		12.6.2	Promoting plumber visits	217
		12.6.3	Targeting demographic groups	217
		12.6.4	The future: Demographic water	
			conservation campaigns	218
		12.6.5	Save Water Swindon project	218

		12.6.6	Education	219
		12.6.7	Framing of water conservation	219
		12.6.8	Water audits	220
		12.6.9	In-house water efficiency	220
	12.7	Case stu	ldy SWOT analysis	220
		12.7.1	Strengths	220
		12.7.2	Weakness	221
		12.7.3	Opportunities	221
		12.7.4	Threats	223
	12.8	Transitio	oning towards urban water security summary	224
	Notes	3	0	224
13	Singa	pore tran	sitioning towards urban water security	225
	Intro	duction		225
	13.1	Brief co	mpany background	225
	13.2	Water sı	apply and water consumption	226
	13.3	Strategie	c vision: Balancing supply with rising demand	227
	13.4	Drivers	of water security	227
		13.4.1	Climate change	228
		13.4.2	Rising energy costs	228
		13.4.3	Rising population and urbanisation	228
	13.5	Regulate	ory and technological demand management	
		tools to	achieve urban water security	229
		13.5.1	Price of potable and used water	229
		13.5.2	Metering	230
		13.5.3	Reducing unaccounted-for water	230
		13.5.4	Developing alternative water supplies	232
		13.5.5	Water Efficiency Fund	232
		13.5.6	Water Efficiency Labelling Scheme	233
		13.5.7	Water Efficient Building Certification	233
		13.5.8	Water Efficiency Management Plans	233
		13.5.9	Code of Practice	234
		13.5.10	Water Efficient Homes programme	234
		13.5.11	Water efficiency in new towns	234
	13.6	Commu	nication and information demand management	
		tools to	achieve urban water security	235
		13.6.1	School programmes: Time to Save water	235
		13.6.2	Public education: Fostering the emergence	
			of a water-saving culture	235
		13.6.3	Water Volunteer Group programme	235
		13.6.4	Water Conservation Awareness Programme	236
		13.6.5	Ten Percent Challenge for non-domestic	
			customers	236
		13.6.6	Watermark Award	236
		13.6.7	Water efficiency certificates for building owners	236
	13.7	Case stu	ldy SWOT analysis	237
		13.7.1	Strengths	237
		13.7.2	Weaknesses	237

		13.7.3	Opportunities	238
		13.7.4	Threats	240
	13.8	Transiti	oning towards urban water security summary	241
	Notes	3		241
14	Toror	nto transit	tioning towards urban water security	242
	Intro	duction		242
	14.1	Brief co	mpany background	242
	14.2	Water sı	upply and water consumption	243
	14.3	Strategi	c vision: Toronto's Water Efficiency Plan	244
	14.4	Drivers	of water security	244
		14.4.1	Previously: Meeting specific water	
			conservation targets	244
		14.4.2	Today: Using water efficiently	244
	14.5	Regulate	ory and technological demand management	o
		tools to	achieve urban water security	245
		14.5.1	Water rate for water, stormwater and sewer	245
		14.5.2	Metering	246
		14.5.3	Reducing unaccounted-for water	247
		14.5.4	Lapacity Buy Back programme	248
		14.3.3	Sower Surcharge Pelete programme	249
		14.5.0 14.5.7	A ssistance for eligible low income seniors and	249
		14.5.7	disabled persons	240
		14 5 8	Partnering with retailers to sell water-efficient	245
		14.5.0	technologies and devices	240
		14 5 9	Toronto's own water-labelling scheme	240
		14 5 10	Distributing water-saving kits	250
	14.6	Commu	nication and information demand management	200
	11.0	tools to	achieve urban water security	250
		14.6.1	School education and public awareness in the past	250
		14.6.2	Education and awareness today	251
		14.6.3	Promoting tap water: Water trailers	251
		14.6.4	Billing inserts	251
		14.6.5	Internet and social media	251
		14.6.6	Sharing lessons with other water utilities	252
	14.7	Case stu	ıdy SWOT analysis	252
		14.7.1	Strengths	252
		14.7.2	Weaknesses	253
		14.7.3	Opportunities	253
		14.7.4	Threats	254
	14.8	Transiti	oning towards urban water security summary	256
	Notes	3		256
15	Vance	ouver trai	nsitioning towards urban water security	257
	Intro	duction	- ·	257
	15.1	Brief co	mpany background	257
	15.2	Water su	upply and water consumption	258

	15.3	Strategie	c vision: Clean water and lower consumption	259	
	15.4	Drivers	of water security	260	
		15.4.1	Population growth	260	
		15.4.2	Infrastructure: Lack of storage	260	
		15.4.3	Climate change	261	
	15.5	Regulate	pry and technological demand management		
		tools to	achieve urban water security	261	
		15.5.1	Price of water	261	
		15.5.2	Metering	261	
		15.5.3	Reducing unaccounted-for water	263	
		15.5.4	Alternative water sources	264	
		15.5.5	Water restrictions on residential lawn sprinkling	264	
		15.5.6	Rebates for laundry machines	265	
		15.5.7	Subsidised indoor water-saving kits	265	
		15.5.8	Installing water- and energy-efficient		
			fixtures in restaurants	265	
		15.5.9	Pilot toilet retrofit project	266	
		15.5.10	Water audits for ICI customers	266	
	15.6	Commu	nication and information demand management		
		tools to	achieve urban water security	266	
		15.6.1	School programmes: H2 Whoa!	266	
		15.6.2	Public education: Promoting 'water-wise'		
			gardening practices	266	
	15.7	Case stu	dy SWOT analysis	267	
		15.7.1	Strengths	267	
		15.7.2	Weaknesses	268	
		15.7.3	Opportunities	268	
		15.7.4	Threats	269	
	15.8	Transitio	oning towards urban water security summary	271	
	Notes	es			
16	Shari	ng the jou	rney: Best practices and lessons learnt	272	
	Intro	duction		272	
	16.1	Best pra	ctices	272	
		16.1.1	Pricing water to promote conservation while		
			ensuring revenue stability	272	
		16.1.2	Universal metering key to water conservation	273	
		16.1.3	Investments in the water distribution system		
			key to lowering UFW	273	
		16.1.4	Reducing energy and carbon emissions	273	
		16.1.5	Source protection: Reducing treatment costs	274	
		16.1.6	Targeted subsidies	274	
		16.1.7	Promoting water efficiency	275	
		16.1.8	Water conservation becoming a way of life	275	
		16.1.9	Demographic-targeted messaging	275	
		16.1.10	Nondomestic water-saving plans	276	
		16.1.11	Recognising water savings	276	

xvi Contents

16.2	Lesson	s learnt	276
	16.2.1	Pricing water too cheaply	276
	16.2.2	Lack of universal metering	277
	16.2.3	Inability to develop alternative sources	278
	16.2.4	Not fully utilising subsidies	278
	16.2.5	Limited education and public awareness	278
	16.2.6	Lack of funding	279
	16.2.7	Lack of online presence	279
	16.2.8	Unsuitable infrastructure	279
	16.2.9	Lack of political will	280
16.3	Moving	g forwards	280
	16.3.1	Manipulation of utility calculations	280
	16.3.2	Legal and physical coercion	281
	16.3.3	Socialisation	281
	16.3.4	Persuasion	282
	16.3.5	Competition/emulation/mimicry	282
Conclusio	ons		284
Index			292

Series Editor Foreword – Challenges in Water Management

The World Bank in 2014 noted:

Water is one of the most basic human needs. With impacts on agriculture, education, energy, health, gender equity, and livelihood, water management underlies the most basic development challenges. Water is under unprecedented pressures as growing populations and economies demand more of it. Practically every development challenge of the 21st century – food security, managing rapid urbanization, energy security, environmental protection, adapting to climate change – requires urgent attention to water resources management.

Yet already, groundwater is being depleted faster than it is being replenished and worsening water quality degrades the environment and adds to costs. The pressures on water resources are expected to worsen because of climate change. There is ample evidence that climate change will increase hydrologic variability, resulting in extreme weather events such as droughts, floods, and major storms. It will continue to have a profound impact on economies, health, lives, and livelihoods. The poorest people will suffer the most.

It is clear that there are numerous challenges in water management in the twenty-first century. In the twentieth century, most elements of water management had their own distinct set of organisations, skill sets, preferred approaches and professionals. The overlying issue of industrial pollution of water resources was managed from a 'point source' perspective.

However, it has become accepted that water management has to be seen from a holistic viewpoint and managed in an integrated manner. Our current key challenges include the following:

- The impact of climate change on water management, its many facets and challenges extreme weather, developing resilience, storm water management, future development and risks to infrastructure
- Implementing river basin/watershed/catchment management in a way that is effective and deliverable
- Water management and food and energy security
- The policy, legislation and regulatory framework that is required to rise to these challenges
- Social aspects of water management equitable use and allocation of water resources, the potential for 'water wars', stakeholder engagement, valuing water and the ecosystems that depend upon it

xviii Series Editor Foreword – Challenges in Water Management

This series highlights cutting-edge material in the global water management sector from a practitioner as well as an academic viewpoint. The issues covered in the series are of critical interest to advanced-level undergraduates and masters students as well as industry, investors and the media.

> Justin Taberham, CEnv Series Editor www.justintaberham.com

Acknowledgements

I wish to say a big thank you to all the people who took time out of their busy schedules to sit down for an interview as well as provide any supplementary material. Without your help this book would not have been possible. Specifically I wish to thank Jan Peter van der Hoek (Waternet); Jens Feddern and Joachim Jeske (Berliner Wasserbetriebe); Allan Broløs and Charlotte Storm (HOFOR); Marc Waage, Greg Fisher and Melissa Elliot (Denver Water); Christian Guenner (Hamburg Wasser); David Grantham, Karen Simpson, Paul Rutter and Rosie Rand (Thames Water); Wai Cheng Wong and Gayathri Kalyanaraman (PUB); Lisa Botticella (Toronto Water) and Jennifer Bailey (Waterworks Utility). Finally, I wish to thank mum who has a great interest in the environment and water and has supported me in this journey of writing the book.

Introduction

In the twenty-first century, the world will see an unprecedented migration of people moving from rural to urban areas: In 2012, human civilisation reached a milestone with 50 percent of the world's population living in urban settings. This is projected to reach 70 percent by 2050. With global demand for water projected to outstrip supply by 40 percent in 2030, cities will likely face water insecurity as a result of climate change and the various impacts of urbanisation.

Traditionally, urban water managers facing increased demand alongside varying levels of supplies have relied on large-scale, supply-side infrastructural projects, such as dams and reservoirs, to meet increased demands for water; however, these projects are environmentally, economically and politically costly. Environmental costs include disruptions of waterways that support aquatic ecosystems, while economic costs stem primarily from a reliance on more distant water supplies often of inferior quality. This not only increases the costs of transportation but also the cost of treatment. Furthermore, with the vast majority of water resources being transboundary, supply-side projects can create political tensions due to water crossing intra- and interstate administrative and political boundaries. As such, cities need to transition from supply-side to demand-side management to achieve urban water security.

Integrated urban water management (IUWM) recognises actions that achieve urban water security extend beyond improving water quality and managing quantity. In particular, IUWM integrates the elements of the urban water cycle (water supply, sanitation, stormwater management and waste management) into both the city's urban development process and the management of the river basin in which the city is located for the purpose of maximising water's many environmental, economic and social benefits equitably. IUWM activities to maximise these benefits include: improving water supply and consumption efficiency; ensuring adequate drinking water quality and wastewater treatment; improving economic efficiency of services to sustain operations and investments for water, wastewater

Urban Water Security, First Edition. Robert C. Brears.

© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

and stormwater management; utilising alternative water sources; engaging communities in the decision-making process of water resources management; establishing and promoting water conservation programmes; and supporting capacity development of personnel and institutions that engage in IUWM.

In IUWM, demand management is the process by which improved provisions of existing water supplies are developed. In particular, demand management promotes water conservation during times of both normal and atypical conditions through changes in practices, culture and people's attitudes towards water resources. Demand management involves communicating ideas, norms and innovative methods for water conservation across individuals and society; the purpose of demand management is to positively adapt society to reduce water consumption patterns and achieve urban water security. Demand management instruments can be divided into regulatory and technological instruments or communication and information instruments. Regulatory and technological instruments include the pricing of water, waste and stormwater to encourage water conservation as well as ensuring the efficient distribution of water. Communication and information instruments include education of young people, public awareness campaigns to encourage water conservation as well as encouraging the installation of waterefficient technologies, such as tap inserts, to reduce water consumption. The book is case study led and provides new research on the human dimensions of IUWM. In particular, it contains nine in-depth case studies of leading developed cities of differing climates, incomes and lifestyles from around the world that have used demand management tools to modify the attitudes and behaviour of water users in an attempt to achieve urban water security. Data for each case study is collected from interviews conducted with each city's respective water utility along with primary documents. The nine cities are Amsterdam, Berlin, Copenhagen, Denver, Hamburg, London, Singapore, Toronto and Vancouver. Each city scores highly on the Siemens Green City Index for water management. The Green City Index is a research project conducted by the Economist Intelligence Unit (EIU) and sponsored by Siemens. Each city is selected as a case study for the following reasons. Amsterdam is a city attracting sustainability-related companies and investments and so is attempting to manage its resources wisely while Berlin has a history of managing its water in a closed system. Copenhagen uses a variety of demand management tools to promote water conservation due to scarcity of good quality water: the majority of the city's groundwater is contaminated from agricultural and industrial production. Denver, since facing a drought in 2002, has been using demand management tools to reduce average per capita water consumption in order to increase the city's resilience to future droughts. Hamburg has a history of relying on imported water but faces population growth challenges. Similarly, London has implemented demand management efforts in response to demand outstripping supply due to rapid population growth, along with a changing climate. Singapore has a limited surface area to collect surface water and has no groundwater supplies; hence, the city state imports nearly all of its water from neighbouring Malaysia. To reduce the country's dependency on imported water, the city has implemented aggressive water conservation campaigns in an attempt to achieve urban water security. Toronto, despite being located by the Great Lakes, has implemented water conservation efforts in response

to the city government requiring its utilities to be sustainable, both environmentally and financially. Finally, Vancouver is implementing demand management strategies to ensure the city does not have to expand its storage capacity to meet rising demand.

This book will introduce readers to the transition management framework that guides cities and their transitions towards urban water security through the use of demand management strategies. A transition in IUWM is a well-planned, coordinated transformative shift from one water system to another, over a long period of time, where a water system comprises physical and technological infrastructure, cultural/political meanings and societal users. In a water system, society is both a component of the water system and a significant agent of change in the system, both physically (change in processes of the hydrological cycle) and biologically (change in the sum of all aquatic and riparian organisms and their associated ecosystems). In IUWM, transitions to new water systems are triggered by changes in the external environment of the system, leading to it being inefficient, ineffective or inadequate in fulfilling its societal function: the main drivers of water insecurity are rapid population and economic growth, increased demand for food and energy and climate change. In transitions towards urban water security, cities set a target water consumption level to achieve (per capita litres/day, for example) with the baseline for comparison being current levels of water consumption and select a portfolio of demand management tools to promote the better use of existing water supplies before plans are made to further increase supply. Overall, transitions in IUWM involve an iterative, long-term and continuous process of influencing people's beliefs and practices to achieve urban water security.

The importance of this book is that in IUWM our understanding of the social, economic and political dimensions of demand for water lags significantly behind engineering and physical science knowledge on the supply of urban water resources. As such, little has been written on the actual processes that enable the application of IUWM; therefore, it is difficult to demonstrate or compare successes across cities in managing urban water sustainably. This is despite the fact it is human attitudes and behaviour that determines the actual amount of water that needs supplying. More specifically, the emphasis on engineering, scientific and technological solutions is no longer sufficient to deal with the numerous problems and uncertainties of increasing demand and climate change on water resources. Therefore, it is critical that human dimensions are incorporated into the managing of urban water, as the perspective of society is crucial for the success or failure of any water management strategy. Nevertheless, the concept of IUWM for addressing water scarcity is changing only slowly from an emphasis on science and technology towards solutions that incorporate cultural and behavioural change. This book presents new research on the human dimensions of IUWM. In particular, the book is case study led containing nine case studies on how leading developed cities from around the world have used demand management strategies (involving regulatory and technological and information and communication instruments) to modify the attitudes and behaviour of water users in an attempt to achieve urban water security. Each case study is written from the perspective of the water utility with input from each city's respective water utility representative.

The book's chapter synopsis is as follows:

- Chapter 1 provides a 'Water 101' for readers to understand what exactly constitutes water and how the quality and quantity of water can vary naturally. The chapter will then describe the impacts of urbanisation on water quality and quantity.
- Chapter 2 defines what water security is and the challenges to achieving urban water security. These challenges include rapid economic and population growth, urbanisation and rising demand for energy and food as well as climate change.
- Chapter 3 defines what sustainability and sustainable development is before discussing the differing approaches to sustainability. The chapter introduces sustainable water management frameworks to achieve water security and then discusses how IUWM can achieve urban water security by balancing demand for water with supply.
- Chapter 4 first discusses the purpose of demand management strategies before discussing the types of demand management strategies available to urban water managers. The chapter then discusses demand management tools available to water managers in transitions towards urban water security.
- Chapter 5 provides readers with a definition of a transition before discussing types of transitions, how they occur over and the various drivers and forces of transitions. The chapter then discusses how transitions can be managed.
- Chapter 6 discusses transitions in the context of managing natural resources sustainably. In particular, the chapter discusses transitions in the context of climate change and natural resource scarcity before introducing readers to transitions towards the sustainable management of water to achieve urban water security.
- Chapter 7 provides readers with a case study on Amsterdam transitioning towards urban water security through demand management.
- Chapter 8 provides readers with a case study on Berlin transitioning towards urban water security through demand management.
- Chapter 9 provides readers with a case study on Copenhagen transitioning towards urban water security through demand management.
- Chapter 10 provides readers with a case study on Denver transitioning towards urban water security through demand management.
- Chapter 11 provides readers with a case study on Hamburg transitioning towards urban water security through demand management.
- Chapter 12 provides readers with a case study on London transitioning towards urban water security through demand management.
- Chapter 13 provides readers with a case study on Singapore transitioning towards urban water security through demand management.
- Chapter 14 provides readers with a case study on Toronto transitioning towards urban water security through demand management.
- Chapter 15 provides readers with a case study on Vancouver transitioning towards urban water security through demand management.
- Chapter 16 provides readers with a series of best practices and lessons learnt from the selected case studies of water utilities implementing demand management strategies in an attempt to achieve urban water security. The chapter then provides readers with a range of recommendations to achieve further urban water security.

Water 101

Introduction

Before we can manage water sustainably to achieve water security – in the face of global challenges including rapid economic and population growth, rising demand for energy and food and climate change impacting the availability of water resources – we need to understand what is water and its natural variations in terms of quantity and quality. This chapter will first describe the physical properties of water, before discussing the Earth's hydrological cycle. The chapter will then discuss natural variations to water quantity and water quality before finally providing readers with an overview of the impacts of urbanisation on water resources.

1.1 What is water?

On Earth, 97.5 percent of all water is saltwater with only 2.5 percent in the form of freshwater. Of this 2.5 percent, 70 percent is locked up in ice or permanent snow cover in mountainous regions and the Antarctic and Arctic regions, while 29.7 percent is stored below the ground (groundwater). Surface water, including rivers and lakes, comprise the remaining 0.3 percent of freshwater resources available.¹

A water molecule is made up of two hydrogen atoms bonded to a single oxygen atom. The connection between atoms is through covalent bonding: the sharing of an electron from each atom to give a stable pair. In the water molecule structure,

Urban Water Security, First Edition. Robert C. Brears. © 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd. the hydrogen atoms are not arranged around the oxygen atom in a straight line; instead there is an angle of approximately 105° between the hydrogen atoms.² The hydrogen atoms are positive and so do not attract one another, while the oxygen atom has two non-bonding electron pairs that repulse the two hydrogen atoms.

Water molecules are described as bipolar because there is a positive and negative side of the molecule. This enables water molecules to bond with one another; this is known as hydrogen bonding. In hydrogen bonding, the positive side of the water molecule (the hydrogen side) is attracted to the negative side (the oxygen side) of another water molecule, and a weak hydrogen bond is formed.³ The hydrogen bonding of water molecules is responsible for a number of water's properties. For instance, based on water's molecular weight (MW=20), water should evaporate and become a gas at room temperature, given that $CO_2(MW = 44)$, $O_2(MW = 32)$, CO(MW=28), N₂(MW=28), CH₄(MW=18) and H₂(MW=2) are all gases at room temperature. The reason why water does not evaporate at room temperature is due to water's high specific heat capacity (a temperature increase is effectively an increase in the motion of molecules and atoms comprising the substance). When water is heated, it causes a movement of water molecules – breaking of the hydrogen bonds. However, due to water's cohesiveness, water molecules have a high resistance to increasing their motion. Therefore, it requires a lot of energy to break the hydrogen bonds. As such, water does not evaporate easily. This high heat capacity means water is resistant to radical swings in temperature which is taken advantage of by organisms. Other properties of water include adhesiveness - water molecules are attracted to other substances such as chemicals, minerals and nutrients; solvency – water is a universal solvent as it can dissolve more substances than any other liquid on Earth and uniqueness – water is unique as its solid form (ice) is less dense than liquid water, and it can change from ice to water vapour without first becoming a liquid.⁴

1.2 Hydrological cycle

The hydrological cycle is the continuous movement of water in all its phases: liquid (precipitation), solid (ice) and gaseous (evaporation) forms. Because water is indestructible, the total quantity of water in the cycle does not diminish as water changes from vapour to liquid or solid and back again. In this cycle, evaporation from oceans (505 000 cubic kilometres) exceeds the 458 000 cubic kilometres of precipitation that falls on them. Meanwhile, 119 000 cubic kilometres of precipitation falls on land, which comprises one third of the Earth's surface, and 72 000 cubic kilometres) is either ground or surface water that eventually returns to the ocean.⁵ The average amount of time a water molecule remains in a particular part of the hydrological cycle is known as its residence time. Streams and rivers usually have residence times of only days or months, while lakes and inland seas have residence times of years to decades. In comparison, oceans and groundwater systems have residence times of 3000–5000 years (Table 1.1).⁶

Compartment	Volume (1000 cubic kilometres)	Percent	Mean residence time (years)
Oceans	1 370 000	93.943	3000
Groundwater	60 000	4.114	5000
Actively exchanging groundwater	4000	0.274	300
Glaciers and ice caps	24000	1.646	8600
Lakes/inland seas	230	0.016	10
Soil water	82	0.006	1
Atmospheric vapour	14	0.001	0.027
Rivers	1.2	0.0001	0.032

The hydrological cycle contains four key components: precipitation, runoff, evaporation and groundwater storage.

1.2.1 Precipitation

Atmospheric vapour, which results in precipitation in both liquid (rainfall) and solid (snow) forms, accounts for less than 0.001 percent of the world's total water; however, due to its low residence times in the atmosphere, it is one of the main drivers of the hydrological cycle.⁷

Precipitation occurs when a body of moist air is cooled sufficiently for it to become saturated. Air can be cooled by a meeting of air masses of differing temperatures or by coming into contact with cold objects such as land surfaces. However, the most important cooling mechanism is the uplifting of air: as warm air rises, its pressure decreases while it expands and cools.⁸ This cooling reduces the air's ability to hold water vapour and condensation forms. Condensation is composed of minute particles floating in the atmosphere, providing a surface for water vapour to condense into liquid water. Water or ice droplets formed around condensation particles are usually too small to fall directly to the ground as precipitation due to the upwards draught within the cloud being greater than the gravitational forces pulling the droplets down. In order to have a large enough mass to fall, raindrops grow through collision and coalescence. In this process, raindrops collide and join together (coalesce) to form larger droplets that collide with many other raindrops before falling towards the surface as precipitation. Whether precipitation is rain or snow depends on the warmth of the clouds. In warm clouds temperatures are above freezing point, and water droplets grow through collision (the coalescence process) to form rain. In cold clouds temperatures are below freezing point. These clouds contain ice crystals and supercooled water that is liquid water chilled below its freezing point without it becoming solid. In these clouds precipitation is in the form of snow.⁹

There are three types of precipitation: frontal and cyclonic, convectional and orographic precipitation. Frontal precipitation occurs in the narrow boundaries or fronts between air masses of large-scale weather systems. In this system, warm moist air is forced to rise up and over a wedge of colder, dense air. There are both warm and cold fronts each distinguished by the resulting precipitation: cold fronts have steep frontal surface slopes causing rapid lifting of warm air, resulting in heavy rain over a short duration, while warm frontal surfaces are much less steep, causing gradual lifting and cooling of air, leading to less intense rainfall but over a longer duration.¹⁰ In cyclonic systems, there is a convergence and rotation of uplifting air. In the northern hemisphere, cyclonic systems rotate anticlockwise and in the southern hemisphere clockwise. Above and below the tropics in the northern and southern hemispheres, cyclonic systems usually have a weak vertical motion, resulting in moderate rain intensities for long durations, while in the tropics, because of greater heating of the air, there is more intense precipitation but of a shorter duration.¹¹ Convectional precipitation happens when the ground surface of a landmass causes warming of the air: as the warm air rises, it cools down and condenses, leading to localised, intense precipitation of a short duration. As this type of precipitation is dependent on the heat of the landmass, it is most common over warm continental interiors such as Australia and the United States. However, this type of precipitation does occur over tropical oceans with slow-moving convective systems producing significant amounts of rainfall. It is common for clusters of thunderstorm cells to be embedded inside convective systems, which commonly leads to flooding events.¹² Orographic precipitation is the result of moist air passing over land barriers such as mountain ranges or islands in the ocean. The South Island of New Zealand is an example of orographic precipitation: the warm moist air off the Tasman Sea reaches the West Coast of the South Island, and as it starts to lift over the Southern Alps, the warm moist air cools and condenses, producing significant rainfall on the West Coast, while on the leeward side the air descends and warms up resulting in low levels of cloud and rainfall.13

1.2.2 Runoff

Runoff, or streamflow, is the gravitational movement of water in channels. A channel can be of any size ranging from small channels in soils with widths in the millimetres to channels of rivers. The unit of measurement for runoff is the cumec, with one cumec being one cubic metre of water per second. Streamflows react to rainfall events immediately indicating that part of the rainfall takes a rapid route to the stream channel. This is known as quick flow, while base flow is the continuity of flow even during periods of dry weather.¹⁴ Precipitation can arrive in stream channels through four ways: direct precipitation, overland flow, throughflow and groundwater flow. Direct precipitation comprises only a small amount of streamflow as channels usually occupy only a small percentage of the surrounding area; therefore, it is only during prolonged storms or precipitation events that direct precipitation contributes significantly to streamflow. Overland flow is water that

instead of infiltrating soil flows over the ground surface into stream channels during periods of high-intensity rainfall. Overland flows usually occur on moderate to steep slopes in arid and semi-arid areas as these areas lack vegetation and so have dry, compact soil.¹⁵ Throughflow is all the water that infiltrates the soil surface and moves laterally towards a stream channel. This type of flow occurs during periods of prolonged or heavy rainfall when water enters the upper part of the soil profile more rapidly than it can drain vertically. Finally, groundwater flow is water that has percolated through the soil layer to the underlying groundwater and from there into the stream channel.¹⁶

1.2.3 Evaporation

Evaporation is the transferral of liquid water into a gaseous state followed by its diffusion into the atmosphere. The presence or lack of water at the surface provides the distinctions in definitions for evaporation.¹⁷ For instance, open water evaporation (E) occurs above a body of water such as a lake, stream or ocean. Potential evaporation (PE) is evaporation that would occur if the water supply was unrestricted, while actual evaporation (AE) is the quantity of water that is actually removed from a surface due to evaporation.

Evaporation over a land surface occurs two ways, either as actual evaporation from the soil or transpiration from plants. Transpiration occurs as part of photosynthesis and respiration and is controlled by the plant leaf's stomata opening and closing.¹⁸ The main source of energy for evaporation is the sun. The term used to describe the amount of energy received from the sun at the surface is net radiation (Q^*), and its calculation is

$$Q^* = QS \pm QL \pm QG$$

where QS is sensible heat, the heat we feel as warmth; QL is latent heat and is the heat absorbed or released during water's phase change from ice to liquid water or liquid water to water vapour (there is a negative flux (when energy is absorbed) when water moves from liquid to gas and a positive flux when gas is converted to liquid) and QG is solid heat flux and is the heat released from the soil that has previously been stored within the soil.¹⁹

1.2.4 Groundwater

Below the Earth's surface, water can be divided into two zones – unsaturated and saturated. In the unsaturated zone, water is referred to as soil water and occurs above the water table, while the saturated zone is referred to as groundwater and occurs beneath the water table. In the unsaturated zone, the majority of water is held in soil that is composed of solid particles (minerals and organic matter) and air. The infiltration rate is used to determine how much water enters the soil over a specific period of time. The rate is dependent on the current water content of